INTERVAL NOTATION

□ INTRODUCTION

EXAMPLES

<u>First Example:</u> Consider all the real numbers greater than 3. One simple way to express this set of numbers is the following *inequality*:

x > 3 Do you see that this inequality can also be written "3 < x"?

We can also *graph* this set of numbers on a number line:

Notice that we put an "open dot" at x = 3 to show that the 3 is <u>not</u> part of the set of numbers. But the arrow goes infinitely to the right because x > 3 is the set of numbers <u>greater</u> than 3.

And a third way to denote this interval is called *interval notation*, and for this inequality, we write:

(3, ∞)

Note that the numbers 3.01, π , 17, and 200 <u>are</u> part of the set; but the numbers -5, 0, 2.5, and 3 are <u>not</u> part of the set.

The parenthesis next to the 3 is analogous to the "open dot" on the graph — it means <u>exclude</u> the endpoint. And you <u>always</u> use a parenthesis at the ∞ or $-\infty$ end of an interval because ∞ is not really a number, so you can't possibly include it.

<u>Second Example:</u> Now we consider all the real numbers less than or equal to 1. This set of numbers can be written as an inequality like this:

$x \le 1$ Note that this inequality can also be expressed as: $1 \ge x$

As a graph on a number line, we write:

The "solid dot" is used to show that x = 1 is part of the set of the numbers. And since x must be less than or equal to 1, the arrow goes infinitely to the left. Either as an inequality or a graph, you should see that the numbers -3, -1.1, $\frac{7}{8}$, and 1 are part of the set, while the numbers 1.001 and $\sqrt{2}$ are not part of the set.

As for interval notation, we write

(-∞, 1]

The (square) bracket next to the 1 is analogous to the "solid dot" on the graph — it means <u>include</u> the endpoint. And, as mentioned before, always use a parenthesis with $\pm \infty$, since you can't ever "get" to ∞ .

<u>Third Example:</u> Now it's time for an interval that represents all the numbers <u>between</u> two numbers. Consider the double inequality

$$-2 \le x \le 5$$

This can be read as "all real numbers between -2 and 5, <u>including</u> the -2, but <u>excluding</u> the 5."

As for interval notation and a graph, here they are:

$$[-2, 5)$$
 -2 5

Interval Notation

Note that some numbers in the interval are -2, 0, $\sqrt{24}$, and 4.9999. But the numbers -2.1, 5, and 2π are <u>not</u> in the interval.

<u>Fourth Example:</u> Sometimes answers to an inequality problem end up looking something like this:

$$x < 3$$
 OR $x \ge 5$

This means pretty much what it says: x can be less than 3, <u>or</u> it can be greater than or equal to 5. As long as x satisfies (at least) <u>one</u> of the two conditions, it's part of the answer. So some x's that satisfy the inequality are 0, 2.9, 5, and 3π . On the other hand, some numbers that do NOT satisfy it are 3, π , and 4.99.

How do we express this in interval notation? Like this, using the **union** symbol:

$$(-\infty, 3) \cup [5, \infty)$$

The *union* symbol, \bigcup , just means putting all the elements of the two sets into one big set; for example,

 ${a, b} \cup {a, c, d} = {a, b, c, d}$

Note that the "overlap" of 'a' is listed only once in the final set.

And as a graph, we write:

Can you see that the interval $(-\infty, \infty)$ is the same as the entire set of real numbers?

$$(-\infty,\infty) = \mathbb{R}$$

In fact, using the *union* notation, we can also write

 \mathbb{R} = Rationals \bigcup Irrationals

where the Rational numbers are all decimals that repeat, while the Irrational numbers are the decimals that <u>don't</u> repeat. So \mathbb{R} is simply the set of ALL decimals.

SUMMARY OF INEQUALITIES AND INTERVALS

Inequality	Interval
x > b	(b,∞)
$x \ge b$	$[b,\infty)$
x < a	$(-\infty, a)$
$x \le a$	$(-\infty, a]$
$a \le x \le b$ which means $x \ge a$ AND $x \le b$, which means that x is <i>between</i> a and b , including both the $aand the b.$	[a, b]
x < a OR x > b	$(-\infty, a) \cup (b, \infty)$

Homework

1. Convert each inequality to *interval notation*:

a. $x \ge 2$ b. $x \le 5$ c. $-1 \le x \le 6$ d. $x \le -3$ OR $x \ge 0$

2. Convert each interval to an *inequality*:

a. $[3, \infty)$ b. $(-\infty, -5)$ c. (-1, 8] d. $(-\infty, -2] \cup (7, \infty)$

3. What is the relationship between the notation \mathbb{R} and the notation $(-\infty, \infty)$?

Interval Notation

Solutions

- **1**. a. $(2, \infty)$ b. $(-\infty, 5]$ c. [-1, 6) d. $(-\infty, -3) \cup (0, \infty)$
- **2**. a. $x \ge 3$ b. x < -5 c. $-1 < x \le 8$ d. $x \le -2$ OR x > 7
- **3**. They both mean exactly the same thing: the set of all **real numbers**.

"Develop a passion for learning. If you do, you will never cease to grow."

Anthony J. D'Angelo

Interval Notation